126 research outputs found

    Deglycosylation and label-free quantitative LC-MALDI MS applied to efficient serum biomarker discovery of lung cancer

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Serum is an ideal source of biomarker discovery and proteomic profiling studies are continuously pursued on serum samples. However, serum is featured by high level of protein glycosylations that often cause ionization suppression and confound accurate quantification analysis by mass spectrometry. Here we investigated the effect of N-glycan and sialic acid removal from serum proteins on the performance of label-free quantification results.</p> <p>Results</p> <p>Serum tryptic digests with or without deglycosylation treatment were analyzed by LC-MALDI MS and quantitatively compared on the Expressionist Refiner MS module. As a result, 345 out of 2,984 peaks (11.6%) showed the specific detection or the significantly improved intensities in deglycosylated serum samples (<it>P </it>< 0.01). We then applied this deglycosylation-based sample preparation to the identification of lung cancer biomarkers. In comparison between 10 healthy controls and 20 lung cancer patients, 40 peptides were identified to be differentially presented (<it>P </it>< 0.01). Their quantitative accuracies were further verified by multiple reaction monitoring. The result showed that deglycosylation was needed for the identification of some unique candidates, including previously unreported O-linked glycopeptide of complement component C9.</p> <p>Conclusions</p> <p>We demonstrated here that sample deglycosylation improves the quantitative performance of shotgun proteomics, which can be effectively applied to any samples with high glycoprotein contents.</p

    Clinical Utility of Germline Genetic Testing in Japanese Men Undergoing Prostate Biopsy

    Get PDF
    Background: Multiple common variants and also rare variants in monogenic risk genes such as BRCA2 and HOXB13 have been reported to be associated with risk of prostate cancer (PCa); however, the clinical setting in which germline genetic testing could be used for PCa diagnosis remains obscure. Herein, we tested the clinical utility of a 16 common variant-based polygenic risk score (PRS) that has been developed previously for Japanese men and also evaluated the frequency of PCa-associated rare variants in a prospective cohort of Japanese men undergoing prostate biopsy. Methods: A total of 1336 patients undergoing first prostate biopsy were included. PRS was calculated based on the genotype of 16 common variants, and sequencing of 8 prostate cancer-associated genes was performed by multiplex polymerase chain reaction based target sequencing. PRS was combined with clinical factors in logistic regression models to assess whether addition of PRS improves the prediction of biopsy positivity. Results: The top PRS decile was associated with an odds ratio of 4.10 (95% confidence interval = 2.46 to 6.86) with reference to the patients at average risk, and the estimated lifetime absolute risk approached 20%. Among the patients with prostate specific antigen 2-10 ng/mL who had prebiopsy magnetic resonance imaging, high PRS had an equivalent impact on biopsy positivity as a positive magnetic resonance imaging finding. Rare variants were detected in 19 (2.37%) and 7 (1.31%) patients with positive and negative biopsies, respectively, with BRCA2 variants being the most prevalent. There was no association between PRS and high-risk rare variants. Conclusions: Germline genetic testing could be clinically useful in both pre- and post-PSA screening settings

    Genomic characterization of biliary tract cancers identifies driver genes and predisposing mutations

    Get PDF
    Background & Aims Biliary tract cancers (BTCs) are clinically and pathologically heterogeneous and respond poorly to treatment. Genomic profiling can offer a clearer understanding of their carcinogenesis, classification and treatment strategy. We performed large-scale genome sequencing analyses on BTCs to investigate their somatic and germline driver events and characterize their genomic landscape. Methods We analyzed 412 BTC samples from Japanese and Italian populations, 107 by whole-exome sequencing (WES), 39 by whole-genome sequencing (WGS), and a further 266 samples by targeted sequencing. The subtypes were 136 intrahepatic cholangiocarcinomas (ICCs), 101 distal cholangiocarcinomas (DCCs), 109 peri-hilar type cholangiocarcinomas (PHCs), and 66 gallbladder or cystic duct cancers (GBCs/CDCs). We identified somatic alterations and searched for driver genes in BTCs, finding pathogenic germline variants of cancer-predisposing genes. We predicted cell-of-origin for BTCs by combining somatic mutation patterns and epigenetic features. Results We identified 32 significantly and commonly mutated genes including TP53 , KRAS , SMAD4 , NF1 , ARID1A , PBRM1 , and ATR , some of which negatively affected patient prognosis. A novel deletion of MUC17 at 7q22.1 affected patient prognosis. Cell-of-origin predictions using WGS and epigenetic features suggest hepatocyte-origin of hepatitis-related ICCs. Deleterious germline mutations of cancer-predisposing genes such as BRCA1 , BRCA2 , RAD51D , MLH1 , or MSH2 were detected in 11% (16/146) of BTC patients. Conclusions BTCs have distinct genetic features including somatic events and germline predisposition. These findings could be useful to establish treatment and diagnostic strategies for BTCs based on genetic information. Lay summary We here analyzed genomic features of 412 BTC samples from Japanese and Italian populations. A total of 32 significantly and commonly mutated genes were identified, some of which negatively affected patient prognosis, including a novel deletion of MUC17 at 7q22.1 . Cell-of-origin predictions using WGS and epigenetic features suggest hepatocyte-origin of hepatitis-related ICCs. Deleterious germline mutations of cancer-predisposing genes were detected in 11% of patients with BTC. BTCs have distinct genetic features including somatic events and germline predisposition

    A Comprehensive Peptidome Profiling Technology for the Identification of Early Detection Biomarkers for Lung Adenocarcinoma

    Get PDF
    The mass spectrometry-based peptidomics approaches have proven its usefulness in several areas such as the discovery of physiologically active peptides or biomarker candidates derived from various biological fluids including blood and cerebrospinal fluid. However, to identify biomarkers that are reproducible and clinically applicable, development of a novel technology, which enables rapid, sensitive, and quantitative analysis using hundreds of clinical specimens, has been eagerly awaited. Here we report an integrative peptidomic approach for identification of lung cancer-specific serum peptide biomarkers. It is based on the one-step effective enrichment of peptidome fractions (molecular weight of 1,000–5,000) with size exclusion chromatography in combination with the precise label-free quantification analysis of nano-LC/MS/MS data set using Expressionist proteome server platform. We applied this method to 92 serum samples well-managed with our SOP (standard operating procedure) (30 healthy controls and 62 lung adenocarcinoma patients), and quantitatively assessed the detected 3,537 peptide signals. Among them, 118 peptides showed significantly altered serum levels between the control and lung cancer groups (p<0.01 and fold change >5.0). Subsequently we identified peptide sequences by MS/MS analysis and further assessed the reproducibility of Expressionist-based quantification results and their diagnostic powers by MRM-based relative-quantification analysis for 96 independently prepared serum samples and found that APOA4 273–283, FIBA 5–16, and LBN 306–313 should be clinically useful biomarkers for both early detection and tumor staging of lung cancer. Our peptidome profiling technology can provide simple, high-throughput, and reliable quantification of a large number of clinical samples, which is applicable for diverse peptidome-targeting biomarker discoveries using any types of biological specimens

    A comprehensive assessment of somatic mutation detection in cancer using whole-genome sequencing.

    Get PDF
    As whole-genome sequencing for cancer genome analysis becomes a clinical tool, a full understanding of the variables affecting sequencing analysis output is required. Here using tumour-normal sample pairs from two different types of cancer, chronic lymphocytic leukaemia and medulloblastoma, we conduct a benchmarking exercise within the context of the International Cancer Genome Consortium. We compare sequencing methods, analysis pipelines and validation methods. We show that using PCR-free methods and increasing sequencing depth to ∼ 100 × shows benefits, as long as the tumour:control coverage ratio remains balanced. We observe widely varying mutation call rates and low concordance among analysis pipelines, reflecting the artefact-prone nature of the raw data and lack of standards for dealing with the artefacts. However, we show that, using the benchmark mutation set we have created, many issues are in fact easy to remedy and have an immediate positive impact on mutation detection accuracy.We thank the DKFZ Genomics and Proteomics Core Facility and the OICR Genome Technologies Platform for provision of sequencing services. Financial support was provided by the consortium projects READNA under grant agreement FP7 Health-F4-2008-201418, ESGI under grant agreement 262055, GEUVADIS under grant agreement 261123 of the European Commission Framework Programme 7, ICGC-CLL through the Spanish Ministry of Science and Innovation (MICINN), the Instituto de Salud Carlos III (ISCIII) and the Generalitat de Catalunya. Additional financial support was provided by the PedBrain Tumor Project contributing to the International Cancer Genome Consortium, funded by German Cancer Aid (109252) and by the German Federal Ministry of Education and Research (BMBF, grants #01KU1201A, MedSys #0315416C and NGFNplus #01GS0883; the Ontario Institute for Cancer Research to PCB and JDM through funding provided by the Government of Ontario, Ministry of Research and Innovation; Genome Canada; the Canada Foundation for Innovation and Prostate Cancer Canada with funding from the Movember Foundation (PCB). PCB was also supported by a Terry Fox Research Institute New Investigator Award, a CIHR New Investigator Award and a Genome Canada Large-Scale Applied Project Contract. The Synergie Lyon Cancer platform has received support from the French National Institute of Cancer (INCa) and from the ABS4NGS ANR project (ANR-11-BINF-0001-06). The ICGC RIKEN study was supported partially by RIKEN President’s Fund 2011, and the supercomputing resource for the RIKEN study was provided by the Human Genome Center, University of Tokyo. MDE, LB, AGL and CLA were supported by Cancer Research UK, the University of Cambridge and Hutchison-Whampoa Limited. SD is supported by the Torres Quevedo subprogram (MI CINN) under grant agreement PTQ-12-05391. EH is supported by the Research Council of Norway under grant agreements 221580 and 218241 and by the Norwegian Cancer Society under grant agreement 71220-PR-2006-0433. Very special thanks go to Jennifer Jennings for administrating the activity of the ICGC Verification Working Group and Anna Borrell for administrative support.This is the final version of the article. It first appeared from Nature Publishing Group via http://dx.doi.org/10.1038/ncomms1000

    Pan-cancer analysis of whole genomes identifies driver rearrangements promoted by LINE-1 retrotransposition

    Get PDF
    About half of all cancers have somatic integrations of retrotransposons. Here, to characterize their role in oncogenesis, we analyzed the patterns and mechanisms of somatic retrotransposition in 2,954 cancer genomes from 38 histological cancer subtypes within the framework of the Pan-Cancer Analysis of Whole Genomes (PCAWG) project. We identified 19,166 somatically acquired retrotransposition events, which affected 35% of samples and spanned a range of event types. Long interspersed nuclear element (LINE-1; L1 hereafter) insertions emerged as the first most frequent type of somatic structural variation in esophageal adenocarcinoma, and the second most frequent in head-and-neck and colorectal cancers. Aberrant L1 integrations can delete megabase-scale regions of a chromosome, which sometimes leads to the removal of tumor-suppressor genes, and can induce complex translocations and large-scale duplications. Somatic retrotranspositions can also initiate breakage–fusion–bridge cycles, leading to high-level amplification of oncogenes. These observations illuminate a relevant role of L1 retrotransposition in remodeling the cancer genome, with potential implications for the development of human tumors

    GA4GH: International policies and standards for data sharing across genomic research and healthcare.

    Get PDF
    The Global Alliance for Genomics and Health (GA4GH) aims to accelerate biomedical advances by enabling the responsible sharing of clinical and genomic data through both harmonized data aggregation and federated approaches. The decreasing cost of genomic sequencing (along with other genome-wide molecular assays) and increasing evidence of its clinical utility will soon drive the generation of sequence data from tens of millions of humans, with increasing levels of diversity. In this perspective, we present the GA4GH strategies for addressing the major challenges of this data revolution. We describe the GA4GH organization, which is fueled by the development efforts of eight Work Streams and informed by the needs of 24 Driver Projects and other key stakeholders. We present the GA4GH suite of secure, interoperable technical standards and policy frameworks and review the current status of standards, their relevance to key domains of research and clinical care, and future plans of GA4GH. Broad international participation in building, adopting, and deploying GA4GH standards and frameworks will catalyze an unprecedented effort in data sharing that will be critical to advancing genomic medicine and ensuring that all populations can access its benefits
    corecore